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I. DATASETS

As explained in the main text, the increased robustness of real multiplexes to targeted attacks can be explained
by hidden geometric correlations interwoven in their layers [1]. These correlations are called “hidden” because
they are not directly observable by looking at the topology of each individual network. Specifically, each sin-
gle network layer can be mapped (or embedded) into a separate hyperbolic space, where each node i is repre-
sented by its polar coordinates, (ri, θi) [2–4]. The radial coordinate ri abstracts node popularity. The angular
distance between two nodes, ∆θij = π − |π − |θi − θj ||, abstracts their similarity [5]. The hyperbolic distance,

xij = cosh−1 (cosh ri cosh rj − sinh ri sinh rj cos ∆θij), is then a metric combination of the two attractiveness at-
tributes, popularity (radial) and similarity (angular), such that the smaller the hyperbolic distance between two
nodes, the higher the probability that they are connected in the observable network [6]. The node coordinates of a
given real network can be inferred using Maximum Likelihood Estimation techniques [2–4]. It has been shown that
both the radial and angular coordinates of nodes in different layers of real multiplexes are significantly correlated [1].
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Dataset Abbreviation MCC c̄1 c̄2 NMI ∆N ∆Nrs

arXiv Layers 1, 2 Arx12 790 0.83 0.81 0.58 25.2 1.0

arXiv Layers 4, 2 Arx42 916 0.83 0.81 0.49 43.8 2.1

arXiv Layers 4, 1 Arx41 564 0.83 0.83 0.46 16.6 1.0

arXiv Layers 2, 8 Arx28 521 0.81 0.85 0.42 15.8 1.0

Physicians Layers 1, 2 Phys12 104 0.28 0.28 0.41 6.0 1.0

arXiv Layers 5, 2 Arx52 182 0.89 0.81 0.41 16.8 1.0

arXiv Layers 1, 5 Arx15 100 0.83 0.89 0.39 9.0 1.0

arXiv Layers 2, 6 Arx26 83 0.81 0.88 0.38 10.0 2.0

Internet Layer 1, 2 Internet 4710 0.63 0.55 0.34 81.4 14.1

arXiv Layers 3, 4 Arx34 26 0.92 0.83 0.34 3.0 1.0

C. Elegans Layers 2, 3 CE23 257 0.21 0.29 0.34 14.0 1.1

Physicians Layers 1, 3 Phys13 99 0.28 0.24 0.32 1.0 1.0

Physicians Layers 2, 3 Phys23 106 0.28 0.24 0.31 2.0 1.0

SacchPomb Layers 1, 3 Sac13 510 0.18 0.42 0.31 18.3 1.0

SacchPomb Layers 3, 5 Sac35 54 0.42 0.64 0.31 1.0 1.0

SacchPomb Layers 2, 3 Sac23 27 0.28 0.42 0.29 2.0 1.0

SacchPomb Layers 1, 2 Sac12 32 0.18 0.28 0.29 1.0 1.0

Drosophila Layers 1, 2 Dro12 449 0.28 0.29 0.26 8.4 2.0

C. Elegans Layers 1, 3 CE13 247 0.24 0.29 0.21 8.2 2.3

SacchPomb Layers 1, 4 Sac14 289 0.18 0.26 0.19 3.5 1.0

SacchPomb Layers 2, 4 Sac24 25 0.28 0.26 0.19 2.0 1.0

Brain Layers 1, 2 Brain 74 0.49 0.40 0.19 7.0 1.0

Rattus Layers 1, 2 Rattus 158 0.26 0.05 0.18 4.0 1.0

C. Elegans Layers 1, 2 CE12 226 0.24 0.21 0.17 3.0 2.0

SacchPomb Layers 3, 4 Sac34 426 0.42 0.26 0.17 4.2 1.5

Air/Train Layers 1, 2 AirTrain 67 0.79 0.48 0.10 3.0 3.0

Table I. Overview of the considered real-world multiplex network data. For each layer pair, MCC denotes the initial size of its
mutually connected component and NMI is the normalized mutual information as calculated in [1]. c̄1,2 denotes the mean local
clustering coefficient in the first or second layer considered. ∆N denotes the critical number of nodes for the real layers while
∆Nrs is the same number for their reshuffled counterparts.

Supp. Tab. I gives an overview of the considered real-world multiplex network data. More details on the data and
on the topological characteristics of each layer can be found in [1]. For each layer pair we report the initial size of
its mutually connected component (MCC), the normalized mutual information NMI as calculated in [1], which gives
a measure of the strength of angular correlations between its layers (see Sec. IX), and the critical number of nodes
∆N whose removal reduces the MCC from 40% its initial value to the square root of it. The table also shows the
corresponding critical number of nodes for the reshuffled counterparts of the real systems, ∆Nrs. As explained in
the main text, to create the reshuffled counterparts, we randomly reshuffle the trans-layer node-to-node mappings.
Specifically, for each real multiplex we select one of its layers and we interchange the ID of each node of the layer with
the ID of a randomly selected node from the same layer. Thus, if a node with ID i is node n1 in layer 1 and node
n2 in layer 2 with correlated coordinates (rn1

, θn1
), (rn2

, θn2
), then, after reshuffling layer 2, the node will become

some other node n′2 in this layer, with coordinates (rn′2 , θn′2) that will not be correlated with (rn1
, θn1

). The reshuffled
counterparts serve as a null model for what one would expect if there were no geometric correlations among the layers.

II. MUTUAL CONNECTIVITY TRANSITION FOR THE CONSIDERED REAL SYSTEMS

Supp. Fig. 1 shows the evolution of the MCC for all real systems of Supp. Tab. I and for their reshuffled counterparts,
under the targeted attacks process described in the main text.
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Figure 1. MCC for real systems (solid green lines) and for their reshuffled counterparts (dashed red lines). The plot titles are
the abbreviations listed in Supp. Tab. I. The plots show the relative size of the MCC as a function of the fraction of nodes
remaining in the system p. Different lines in each plot correspond to different realizations of the targeted attacks process.
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III. MUTUAL CONNECTIVITY TRANSITION FOR MODEL NETWORKS

A. Description of the geometric multiplex model (GMM)

In this section we present the technical details of the geometric multiplex model (GMM), developed in [1][7]. The
model constructs synthetic multiplex networks with geometric correlations. Specifically, it constructs single-layer
topologies using the H2 model [8], and allows for radial and angular coordinate correlations across the different layers.
Instead of working directly with the H2 model, the GMM model makes use of the S1 model [5] that is more convenient
to work with, and which is isomorphic to the H2 model through a simple change of variables [8]. We first review the
S1 model and its relation to the H2 model.

Instead of radial and angular coordinates ri, θi, each node i in the S1 model has hidden variables κi, θi. The hidden
variable κi is the node’s expected degree in the resulting network, while θi is the angular (similarity) coordinate of
the node on a circle of radius N/2π, where N is the total number of nodes. To construct a network with the S1

model that has size N , average node degree k̄, power law degree distribution with exponent γ > 2, and temperature
T ∈ [0, 1) (which controls clustering in the network), we perform the following steps:

i. Sample the angular coordinates of nodes θi, i = 1, 2, . . . , N , uniformly at random from [0, 2π], and their hidden
variables κi, i = 1, 2, . . . , N , from the probability density function (PDF)

ρ(κ) = (γ − 1)κminγ−1

κ−γ , (1)

κmin = k̄
γ − 2

γ − 1
,

where κmin is the expected minimum node degree, which is a function of the average degree k̄; [9]

ii. Connect every pair of nodes i, j with probability

r(κi, θi;κj , θj) =
1

1 +
[
d(θi,θj)
µκiκj

] 1
T

, (2)

d(θi, θj) =
N

2π
∆θij , ∆θij = |π − |π − |θi − θj |||,

µ =
sinTπ

2k̄Tπ
,

where d(θi, θj) is the angular distance between nodes i, j on the circle.

The S1 model is equivalent to the H2 model after transforming the expected node degrees κi to radial coordinates
ri via

ri = R− 2 ln
κi
κmin

, (3)

where R is the radius of the hyperbolic disc in the H2 model where all nodes reside,

R = 2 ln
N

c
, (4)

c = k̄
sinTπ

2T

(
γ − 2

γ − 1

)2

.

It is easy to see that after the above change of variables the connection probability in Eq. (2) becomes the Fermi-Dirac
connection probability in the H2 model,

p(xij) =
1

1 + e
1

2T (xij−R)
, (5)

where xij ≈ ri+rj+2 ln
∆θij

2 is the hyperbolic distance between nodes i, j [8]. We note that without loss of generality,
we use here a hyperbolic plane of curvature K = −1. See [8] for further details.

We now describe the framework for constructing a two-layer multiplex system with geometric correlations. Each
single-layer (layer 1, layer 2) is constructed according to the S1 model, and we account for correlations among the
hidden variables of nodes in the two layers, whose strength can be tuned. In a nutshell, the framework consists of the
following steps:
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i. Assignment of hidden variables κ1,i, θ1,i to each node i in layer 1 like in the S1 model (Eqs. (6), (8));

ii. Assignment of hidden variables κ2,i, θ2,i to each node i in layer 2, depending on the node’s hidden variables
in layer 1 (Eqs. (9), (13))—the assignment here is done such that the marginal (unconditional) distribution of
κ2,i, θ2,i is still the one prescribed by the S1 model (Eqs. (11), (8));

iii. Creation of edges, by connecting node pairs in each layer with the corresponding S1 connection probability,
which depends exclusively on the assigned hidden variables of nodes in each layer (Eqs. (15), (16));

iv. S1-to-H2 transformation, by mapping the hidden variables κ1,i, κ2,i to radial coordinates r1,i, r2,i (Eqs. (17),
(18)).

Below, we describe these steps in detail. We assume that the two layers have the same number of nodes N1 = N2 = N .
i. Assignment of hidden variables in layer 1. For each node i = 1, 2, . . . , N in layer 1 we sample its hidden variable

κ1,i from the PDF

ρ1(κ1) = (γ1 − 1)κminγ1−1

1 κ−γ11 , (6)

κmin
1 = k̄1

γ1 − 2

γ1 − 1
, (7)

where k̄1 and γ1 > 2 are respectively the target average degree and power law degree distribution exponent in layer
1. The angular coordinate θ1,i of each node i = 1, 2, . . . , N , is sampled from the uniform PDF

f(θ) =
1

2π
, θ ∈ [0, 2π]. (8)

ii. Assignment of hidden variables in layer 2. We now want to assign to each node i = 1, 2, . . . , N its hidden
variable κ2,i in layer 2, conditioned on the value of its hidden variable κ1,i in layer 1. In particular, we sample the
hidden variable κ2,i of each node i = 1, 2, . . . , N , from the conditional cumulative distribution function (CDF)

Fν(κ2|κ1, {γ1, γ2, κ
min
1 , κmin

2 }) = e−(ϕ
1/(1−ν)
1 +ϕ

1/(1−ν)
2 )1−ν

[
ϕ

1/(1−ν)
1 + ϕ

1/(1−ν)
2

]−ν ϕ
ν/(1−ν)
1 κmin

1 κγ11

κmin
1 κγ11 − κminγ1

1 κ1
, (9)

ϕi = − ln
[
1− (κmin

i /κi)
γi−1

]
, for i = 1, 2, (10)

where κ1 is the value of the hidden variable of the node in layer 1, {γ1, γ2, κ
min
1 , κmin

2 } are the network parameters
defined earlier, and ν ∈ [0, 1] is the correlation strength parameter. The higher the value of ν the stronger is the
correlation between κ2,i and κ1,i. Eq. (9) ensures that in the second layer κ2,i’s satisfy the marginal (unconditional)
PDF

ρ2(κ2) = (γ2 − 1)κminγ2−1

2 κ−γ22 , (11)

κmin
2 = k̄2

γ2 − 2

γ2 − 1
, (12)

where k̄2 and γ2 > 2 are respectively the target average degree and power law degree distribution exponent in layer
2. See [1] for the derivation of Eq. (9).

The angular coordinate θ2,i of each node i = 1, 2, . . . , N in layer 2 is obtained by

θ2,i = mod

[
θ1,i +

2πli
N

, 2π

]
, (13)

where θ1,i is the angular coordinate of the node in layer 1, and li is a directed arc length on the S1 circle of radius
R = N/2π, which is sampled from the zero-mean truncated Gaussian PDF

fσ(l) =
1
σφ
(
l
σ

)
Φ
(
N
2σ

)
− Φ

(
− N

2σ

) , −N
2
≤ l ≤ N

2
, (14)

σ ≡ σ0

(
1

g
− 1

)
,

where σ0 = min[100, N/(4π)] denotes the variance for g = 0.5 and φ(x) = 1√
2π
e−

1
2x

2

, Φ(x) =
∫

dxφ(x), σ ∈ (0,∞) is

the variance of the PDF, and g ∈ [0, 1] is the angular correlation strength parameter. The higher the value of g the
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stronger is the correlation between θ2,i and θ1,i. When g → 0, σ →∞, fσ(l) becomes the uniform PDF, and θ2,i, θ1,i

are not correlated. When g = 1, σ = 0, and li = 0, meaning that the angles of each node i are identical in the two
layers, θ2,i = θ1,i.

iii. Creation of edges. Once all node hidden variables are assigned, we connect each node pair i, j in layers 1 and 2
with the corresponding S1 connection probabilities given in Eqs. (15), (16) below,

r1(κ1,i, θ1,i;κ1,j , θ1,j) =
1

1 +
[
d1(θ1,i,θ1,j)
µ1κ1,iκ1,j

] 1
T1

, (15)

d1(θ1,i, θ1,j) =
N

2π
∆θ1,ij ,

∆θ1,ij = |π − |π − |θ1,i − θ1,j |||,

µ1 =
sinT1π

2k̄1Tπ
,

r2(κ2,i, θ2,i;κ2,j , θ2,j) =
1

1 +
[
d2(θ2,i,θ2,j)
µ2κ2,iκ2,j

] 1
T2

, (16)

d2(θ2,i, θ2,j) =
N

2π
∆θ2,ij ,

∆θ2,ij = |π − |π − |θ2,i − θ2,j |||,

µ2 =
sinT2π

2k̄2T2π
,

where T1 ∈ [0, 1), T2 ∈ [0, 1) are the temperatures, which control clustering in each layer. We recall that the average
node clustering is maximized at temperature T = 0, and nearly linearly decreases to zero with T ∈ [0, 1).
iv. S1-to-H2 transformation. Finally, we map the node hidden variables κ1,i, κ2,i in layers 1, 2, to radial coordinates

r1,i, r2,i using the relations below,

r1,i = R1 − 2 ln
κ1,i

κmin
1

, R1 = 2 ln
N

c1
, (17)

c1 = k̄1
sinT1π

2T1

(
γ1 − 2

γ1 − 1

)2

,

r2,i = R2 − 2 ln
κ2,i

κmin
2

, R2 = 2 ln
N

c2
, (18)

c2 = k̄2
sinT2π

2T2

(
γ2 − 2

γ2 − 1

)2

,

where κmin
1 , κmin

2 are given in Eqs. (7), (12).

B. Results

Supp. Fig. 2 shows the evolution of the MCC for synthetic two-layer multiplexes generated by the geometric
multiplex model (GMM) for different sizes and correlations strengths.

IV. DISTRIBUTION OF COMPONENT SIZES IN MODEL NETWORKS

In the case of no angular correlations (g = 0), where we observe a discontinuous percolation transition, we find
that below a critical percentage of nodes remaining in the system, henceforth called a critical point, the layers are
completely fragmented, and there are only very small mutually connected components of size at most 2. Above the
critical point, we observe a macroscopic MCC and only nodes that do not belong to the MCC remain fragmented into
small components, see Supp. Fig. 3.

The case where there are angular correlations is very different. As can be seen from Supp. Fig. 4, as p increases and
approaches a certain value, which in the example of Supp. Fig. 4 is p ≈ 0.908, the distribution of mutually component
sizes becomes more and more heterogeneous, and at p ≈ 0.908 it resembles a power law.
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Figure 2. Evolution of the MCC for two-layer synthetic multiplexes of different sizes constructed with the GMM model. In
each plot the layers have the same size N as indicated in the title, power law degree distribution with exponent γ = 2.6, average
node degree 〈k〉 ≈ 6, and clustering c̄ = 0.35. Results are shown for different combinations of angular and radial correlation
strengths g and ν, as indicated in the legends.

V. SCALING OF THE CRITICAL NUMBER OF NODES ∆N

Supp. Fig. 5 shows the critical number of nodes, ∆N , whose removal reduces the MCC from 40% of its initial
value to the square root of it, as a function of the system size N . Each point in the plots corresponds to a two-layer
synthetic multiplex constructed as in Fig. 2e of the main text, and is an average over 60 realizations of the multiplex.
We consider different angular correlation strengths g ∈ [0, 1] and either no radial correlations (ν = 0) or maximal
radial correlations (ν = 1). The plot corresponding to ν = 1 is Fig. 2h in the main text. We observe that the behavior
is virtually the same irrespectively of the absence (ν = 0) or presence (ν = 1) of radial correlations. On the other
hand, we observe a clear distinction depending on the absence (g = 0) or presence (g > 0) of angular correlations.
Specifically, we see that in the presence of angular correlations (g > 0), ∆N scales with the system size. Furthermore,
we observe that for sufficiently large sizes N the scaling of ∆N follows a somewhat similar trend for the considered
values of g > 0. However, we also observe that when angular correlations are weak and the system size is relatively
small, the behavior is close to the case of no angular correlations.
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Figure 3. Evolution of the MCC for a two-layer synthetic multiplex constructed with the GMM model. Each layer has
N = 50000 nodes, power law degree distribution with exponent γ = 2.6, average node degree 〈k〉 ≈ 6, and clustering c̄ = 0.35.
There are no radial or angular correlations, ν = 0, g = 0. Left: relative size of the MCC as a function of the fraction of
nodes remaining in the system p. Center: distribution of mutually connected component sizes below the critical point. Right:
distribution of mutually connected component sizes above the critical point.
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Figure 4. Distribution of component sizes during the evolution of the MCC for a two-layer synthetic multiplex constructed
with the GMM model as in Supp. Fig. 3 but with maximal angular correlations, g = 1.

VI. SECOND LARGEST MUTUALLY CONNECTED COMPONENT AND DISTRIBUTION OF
CASCADES IN MODEL NETWORKS

In Supp. Fig. 6a, we observe that different realizations of the multiplex converge to the same MCC line for large
system sizes, as expected. Figs. 6b,c show the evolution of the second largest MCC and the scaling of its maximum
with the system size, for maximal angular correlations (g = 1) and no radial correlations (ν = 0). In Supp. Fig. 6c,
we observe that the maximum of the second largest MCC scales with the system size approximatively ∝ N0.84 and
so scales as a power law, which indicates infinite fluctuations as typically happens for the susceptibility in continuous
transitions [10–12].

Furthermore, Supp. Fig. 7 shows the distribution of jumps in the presence (g = 1) and absence (g = 0) of angular
correlations. We define a jump as the number of nodes that are disconnected from the MCC due to the removal of
a single node in the targeted attack sequence. We note that in the absence of angular correlations the largest jump
cascade is clearly distinct from the second largest one (see Supp. Fig. 7 for g = 0). Furthermore, as shown in Fig. 2f
of the main text, the size of the largest jump cascade is a constant fraction of the system size in the absence of angular
correlations, while the second largest jump cascade relative to the system size vanishes with the system size. On the
contrary, as shown in Fig. 2f of the main text, if angular correlations are present, both the largest and second largest
jump relative to the system size decrease, and are not clearly distinct in the distribution histograms (Supp. Fig. 7
for g = 1). This observation reflects the different nature of the transition depending on the presence or absence of
angular correlations.

VII. TYPE OF TRANSITION AND MODEL PARAMETERS

As mentioned in the main text, we observe an apparently continuous transition in the thermodynamic limit only
if the multiplex layers have sufficiently strong metric structure and do not loose the small-world property in the
targeted attack process. The strength of the metric property in the layer topologies used in our model depends on
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Figure 5. Scaling of the critical number of nodes ∆N for different values of the angular correlation strength parameter g ∈ [0, 1].
Left: no radial correlations, ν = 0. Right: maximal radial correlations, ν = 1.

a) b) c)

Figure 6. MCC and second largest MCC for a two-layer synthetic multiplex constructed with the GMM model. Each layer has
the same number of nodes, power law degree distribution with exponent γ = 2.6, average node degree 〈k〉 ≈ 6, and clustering
c̄ = 0.35. There are maximal angular correlations g = 1 and no radial correlations ν = 0. Plot (a) shows the evolution of the
MCC for different layer sizes N as indicated in the legend (×103); for each size, results are shown for three realizations of the
multiplex. Plot (b) shows the size of the second largest MCC as a function of p for different layer sizes N as indicated in the
legend (×103); for each size, the results are averages over 60 realizations of the multiplex. Plot (c) shows the scaling of the
maximum of the second largest MCC; for each size N , the results are averages over 60 realizations of the multiplex. The black
dashed line shows a fit ∝ N0.84, while the inset shows the value of p ≡ pc where the maximum is realized.

the temperature parameter T ∈ (0, 1), which also controls the amount of clustering in the system (lower temperature
means higher clustering and stronger metric properties, and for T → 1 clustering vanishes in the thermodynamic
limit) [1]. However, for T < 0.5 the resulting networks are only small-world if they are simultaneously scale-free [5],
i.e., they have a power-law degree distribution exponent γ between 2 and 3. Hence, for T < 0.5, to fulfil the small-
world properties the generated networks rely strongly on their hubs. The hubs, however, are removed in the targeted
attacks process, and hence at some point the networks loose the small-world property (this will happen earlier for
lower temperatures). As a consequence, the multiplex behaves effectively like a one-dimensional system, and the
critical point of the transition is expected to go to pc = 1. Indeed, Supp. Fig. 8b confirms that, as we reduce the
temperature below 0.5, the critical point approaches 1.

On the other hand, if T is increased the strength of the metric structure is reduced. Eventually, for T → 1, the
metric structure breaks down and, in particular, the correlated case degenerates to the uncorrelated case in our model.
As a consequence, it is not surprising that for high temperatures we obtain a discontinuous transition, even in the
presence of geometric correlations. Indeed, Supp. Fig. 8c confirms that this is the case. The figure shows the scaling
of the largest cascade in the system, like Fig. 2f in the main text, for different values of the temperature. We observe
that only for 0.5 < T < 0.8 the relative size of the largest cascade decreases. In Supp. Fig. 9 we show the evolution
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Figure 7. Distribution of cascade sizes for a two-layer synthetic multiplex constructed with the GMM model. Each layer has
N = 106 nodes, power law degree distribution with exponent γ = 2.6, average node degree 〈k〉 ≈ 6, and clustering c̄ = 0.35.
The angular and radial correlation strengths g and ν are indicated in the plot titles.
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Figure 8. Second largest MCC and largest cascade size in a two-layer synthetic multiplex, as a function of the temperature
parameter T . Each layer has the same number of nodes, power law degree distribution with exponent γ = 2.6, and average
node degree 〈k〉 ≈ 6. Here, we have set g = 1 and ν = 0. Plot (a) shows the maximum of the second largest MCC and plot
(b) shows the value of p ≡ pc where this maximum is realized. The results correspond to different layer sizes as indicated in
the legend of (b). Plot (c) shows the size of the largest cascade as a function of the system size for different values of the
temperature T as indicated by the colors in the legend.

of the MCC of the system for different values of T and different sizes.

VIII. EDGE OVERLAP IS NOT SUFFICIENT TO PRODUCE THE MITIGATION EFFECT

Geometric correlations induce, but are not equivalent to, edge overlap, i.e., a finite fraction of links that exist
simultaneously in all layers of a multiplex. In this section, we show that edge overlap alone is not enough to mitigate
the vulnerability of multiplex networks against targeted attacks.

To this end, we have designed the following null model that constructs synthetic two-layer multiplexes with the
same single layer topologies and edge overlap as those with angular correlations considered in the main text. We first
start with the trivial case of two identical network layers. That is, we create one layer with the GMM model, and then
simple clone this layer. We denote this two-layer multiplex by id. Then, we perform a node id reshuffling procedure
on this multiplex similar to the one described in the main text, but with the following difference. We select a layer,
but instead of reshuffling all node-to-node mappings in the layer, we first randomly select a fraction q of nodes from
the layer that we denote by Q. Then, we perform a random reshuffling among the ids of nodes that belong to Q. We
denote this partially reshuffled counterpart by rs. Below, we present results for q = 0.5, which leads to the same edge
overlap O ≈ 0.2 in rs, as in a two-layer multiplex constructed by the GMM model as in Fig. 2e of the main text with
g = 1 (maximal angular correlations) and ν = 0 (no radial correlations)—we denote the latter by an.
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Figure 9. Evolution of the MCC for two-layer synthetic multiplexes of different layer sizes N as indicated in the plot titles and
different temperatures as indicated in the legend of the last plot. Each layer has a power law degree distribution with exponent
γ = 2.6, and average node degree 〈k〉 ≈ 6. Here, we have set g = 1 and ν = 0.

In Supp. Fig. 10, we juxtapose the evolution of the MCC in id, rs, and an. In the figure, we also consider a two-layer
multiplex generated by the GMM model as above but with no angular or radial correlations (g = 0, ν = 0)—denoted
by un. We note that the edge overlap in un is O ∝ 1/N ≈ 0. From the figure, we observe that rs has a lower critical
point p compared to the uncorrelated multiplex un, but has a steeper onset compared to the angular correlated
multiplex an.

Figure 10. Evolution of the MCC for two-layer synthetic multiplexes constructed as described in the text: id (identical layers),
rs (partially reshuffled, q = 0.5), an (angularly correlated layers), and un (uncorrelated layers). Each plot shows results for four
realizations of each multiplex. In all cases the layers have the same size N as indicated in the plot titles.

Furthermore, Supp. Fig. 11a shows the scaling of the critical number of nodes ∆N with the system size. We observe
that eventually rs behaves as the uncorrelated case un, i.e., ∆N = 1 for sufficiently large system sizes. By contrast,
∆N increases similarly in id and an with the system size. For rs, we also find that the maximum of the second largest
MCC increases with the system size, but slower compared to id and an, see Supp. Fig. 11b. Finally, regarding the
cascade sizes, rs behaves similarly as the uncorrelated case un. Specifically, in Figs. 11c,d we observe that for rs and
un the largest cascade remains constant with the system size, while the second largest decreases. By contrast, in id
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and an both the largest and second largest cascades decrease with the system size.
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Figure 11. (a) Critical number of nodes ∆N , (b) maximum of the second largest MCC, (c) largest cascade size, and (d)
second largest cascade size. The results correspond to two-layer synthetic multiplexes constructed as described in the text:
id (identical layers), rs (partially reshuffled, q = 0.5), an (angularly correlated layers), and un (uncorrelated layers). In all
cases the layers have the same size N indicated in the x-axes. Each point in the plots is an average over 30 realizations of the
corresponding multiplex.

To conclude, rs exhibits qualitatively the same behavior as the uncorrelated multiplex un, while the behavior of an
qualitatively resembles the one of id. Therefore, overlap alone is not sufficient to mitigate the extreme vulnerability
of multiplex networks against targeted attacks.

IX. QUANTIFYING ANGULAR (SIMILARITY) CORRELATIONS VIA MUTUAL INFORMATION

Here, we provide an overview of the mutual information measure used to quantify the correlation strength between
the inferred angular coordinates of nodes that exist in both layers of each considered layer pair in Supp. Tab. I.
Formally, the mutual information between two random variables X,Y can be written as [13]

I(X;Y ) =

∫
Y

∫
X

p(x, y) ln

(
p(x, y)

p(x)p(y)

)
dxdy, (19)

where p(x, y) is the joint probability density function of X,Y , and p(x), p(y) are the marginal probability density
functions of X and Y . The higher the mutual information I(X;Y ) the stronger is the correlation between X and Y .
To be able to compare angular correlations across different layer pairs we compute the normalized mutual information,

NMI = I(X;Y )/max{I(X;X), I(Y ;Y )}, (20)

which takes values in [0, 1]. The higher the NMI, the stronger are the angular correlations between layers. To compute
the mutual information between layer pairs we have used the k-nearest-neighbor estimator of Kraskov et al. [13], whose
implementation can be found at [14]. See [1] for further details.
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Figure 12. Clustering correlation coefficient ρc vs. NMI in layer pairs of real multiplexes.

X. GEOMETRIC CORRELATIONS VS. CLUSTERING CORRELATIONS

Real networks usually exhibit high clustering, i.e., a large number of triangular subgraphs, which can be seen as a
natural reflection of the metric property of the underlying similarity space [5, 6]. Intuitively, if a node a is close in
the angular similarity space (i.e., it is similar) to a node b, and b is close to a third node c, then a is also close to c
because of the triangle inequality, forming triangle abc in the observed network topology. Indeed, most of the real
layers we considered have an average clustering coefficient in the range 0.3-0.8 [1], see Supp. Tab. I.

Geometric correlations, that is, correlations among the similarity coordinates of nodes in different layers, are
expected to lead to clustering correlations, that is, correlations between the clustering coefficients of the nodes. We
verify this in Fig. 14, which shows that the Pearson correlation coefficient [15] between the clustering coefficients of
nodes, ρc, is significant in the majority of the considered real layers, and well correlated with the NMI between the
layers. However, the converse is not always true. That is, clustering correlations do not necessarily lead to geometric
correlations. Below, we verify that clustering correlations alone cannot explain the increased robustness observed in
real multiplexes.

To this end, we create counterparts of real systems by reassigning ids to nodes of the layers such that clustering
correlations across layers are maximized. Specifically, we perform the following clustering-correlation-maximization
procedure. Given two layers 1, 2, we first create two corresponding lists l1, l2, each consisting of the nodes of each
layer ranked according to the decreasing order of their clustering coefficient. That is, l1(i) and l2(i) contain the nodes
with the ith highest clustering coefficient in layers 1 and 2, respectively. For each position i, we then assign the same
id to nodes that are at l1(i), l2(i). We note that this procedure only reassigns node ids in the two layers and does not
alter the layers’ topologies. However, it breaks geometric correlations between the layers as two nodes with the same
clustering coefficient can have very different coordinates in the similarity space of each layer after this procedure.

Supp. Tab. II juxtaposes the clustering correlation coefficients in the real systems and in their reshuffled counterparts
obtained following the above procedure, as well as the corresponding critical number of nodes ∆N and ∆N c

rs. We
observe that even though ∆N c

rs is higher in some of the cases compared to the number obtained after the random
reshuffling procedure in Table I (∆Nrs), it is still significantly lower compared to the one in the real systems, ∆N ,
for the majority of the cases. These results validate that clustering correlations alone cannot explain the increased
robustness observed in real systems.
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