
Critical behavior in charging of electric vehicles
Ľuboš Buzna12,  Rui Carvalho3, Richard Gibbens4 and Frank Kelly5

1Department of Mathematical Methods and Operations Research, 2ERA Chair for Intelligent Transport Systems, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia; 
3School of Engineering and Computing Sciences, Durham University, Lower Mountjoy, South Road, Durham, DH1 3LE, UK; 4Computer Laboratory, University of Cambridge, William Gates 
Building, 15 JJ Thomson Avenue, Cambridge, CB3 0FD, UK; 5Statistical Laboratory, Centre for Mathematical  Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, UK

Numerical resultsAbstract

The increasing penetration of electric vehicles over the coming decades, taken together 
with the high cost to upgrade local distribution networks and consumer demand for home 
charging, suggest that managing congestion on low voltage networks will be a crucial 
component of the electric vehicle revolution and the move away from fossil fuels in 
transportation. Here, we model the max-flow and proportional fairness protocols for the 
control of congestion caused by a fleet of vehicles charging on two real-world distribution 
networks. We show that the system undergoes a continuous phase transition to a 
congested state as a function of the rate of vehicles plugging to the network to charge. 
We focus on the order parameter and its fluctuations close to the phase transition, and 
show that the critical point depends on the choice of congestion protocol. Finally, we 
analyse the inequality   in  the  charging  times  as the  vehicle arrival    rate increases, 
and show  that charging   times are considerably more equitable in proportional fairness 
than  in max-flow [1].
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We model the electrical distribution network as a directed rooted tree graph composed of 
the node set   and edge  set   [2]. Only the root node of the tree injects the power into the 
network and electric vehicles can be plugged into all other nodes. By the symbol  (j) we 
denote the subtree rooted in the node       .  An edge           connects node   to node  , 
where  is closer to the root than  , and is characterised by the impedance                    , 
where     is the edge resistance and     the edge reactance. The power loss along edge     
is given by                                , where         is the real power loss, and              the 
reactive power loss.
 
 
 
 
 
 

Vehicle   derives a utility              from the allocated charging power      . By the 
symbol       , we denote the voltage level on the node         . We allocate the power to 
electric vehicles by maximizing the aggregate utility      , while making sure that all nodal 
voltages are within the interval                                                    , where     is a parameter 
and               is the nominal voltage level the network is operated on.
 
 
 
With every edge               is associated one decision variable              that it is equal to the 
product of real voltages on edge nodes, i.e.                           and similarly with every node
        is associated variable                   . The generalized inequality (4) means that 
matrices are positive semidefinite. Constraints (2) ensure that all nodal voltages are within 
the defined limits. Constraints (3)-(4) encode relations between decision variables         , 
power allocations        and power losses along edges that arise from Kirchhoff's current 
and voltage laws:

Numerical Results

Proportional fairness [3]:
 

Max-flow:
 

To study the behaviour of max-flow and proportional fairness as a function of the number 
of vehicles arriving at the network to be charged, we implement a discrete simulator that 
solves the congestion control problem in discrete time steps, starting with no vehicles 
charging on the network. Vehicles arrive at the network in continuous time (following a 
Poisson process with rate   ) and with empty batteries, choose a node with uniform 
probability amongst all nodes (excluding the root), and charge at that node until their 
battery is full, at which point in time they leave the network. Once a vehicle plugs into a 
node, the congestion control algorithm will allocate it an instantaneous power, which is a 
function of the network topology and electrical elements, as well as the location of other 
vehicles. We simulated vehicles charging on the realistic SCE 47-bus and SCE 56-bus 
distribution networks.
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We set                                              . In order to characterize the behaviour of the network, 
we adopt the congestion parameter:                                 ,where                                      
and        indicates an average over time window of length     . Congestion parameter
            when all cars  leave the network fully charged within a large enough time window, 
and            , when some vehicles have to wait for increasingly long times to fully charge, 
i.e. the network is congested. 

The number      of charging vehicles at time   fluctuates widely close to the critical point, 
and thus it is difficult to determine  .To overcome this limitation, we adopt the 
susceptibility-like function:                                    , where      is the length of a time 
window, and          is the standard deviation of the order parameter    .

To characterise inequalities in the user experience, we analyse the Gini coefficient of 
charging time. For a random sample (                     ), the empirical Gini coefficient,     , 
may be estimated by a sample mean:
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Simulation results suggest that   depends on several factors (the network topology, the 
complex impedance on the edges, battery capacity,         , as well as the position of 
vehicles on the network). The critical point is numerically indistinguishable for max-flow 
and proportional fairness in the 56-bus network. In the 47-bus network, however, we find 
that     is larger for proportional fairness than for max-flow.

Similarly to our analysis of       , the values of    are indistinguishable in the 56-bus 
network. In contrast, however, in the 47-bus network the maximum point of       is smaller 
for max-flow than for proportional fairness. This suggests that proportional fairness 
charges a slightly larger number of vehicles than max-flow, and is thus marginally more 
efficient, on a neighbourhood of its critical point.

We observe that the Gini coefficient of the charging time is larger in max-flow than in 
proportional fairness, for each of the networks. Moreover, the Gini coefficient increases 
faster in max-flow than in proportional fairness in the non-congested regime, showing 
that, when the system is stable, vehicles will experience a faster increase in the inequality 
of charging times in max-flow than in proportional fairness, with the increase of the 
vehicle arrival rate    . 

We showed numerically on the 47-bus bus network that the onset of congestion takes 
place for larger values of   in proportional fairness than in max-flow. We confirmed this 
results also analytically. This result is surprising, because common   expectation is that 
efficiency of the system comes at the expense of the increased inequality. However, it 
should be noted that here we optimise the dynamic system over a certain time period and 
our optimisation model is not dynamic, hence, it is only a heuristic. Proportional fairness is 
a promising candidate protocol to manage congestion in the charging of electric vehicles.

Data related challenges: To gain better understanding on how EV drivers use electric  
vehicles and to refine the demand models of EV charging in residential areas by 
characterizing more accurately the arrival process, demanded energy and charging 
profiles desired by users could be derived from data. Suitable data sources are datasets 
that concen individual mobility of citizens, and  operational data from public charging 
station operators. Available operational data from public charging station operators include 
(a few thousand) charging stations and (several tens of thousands of) users that are
characterized by (millions of) individual charging transactions. 
Network model related  challenges: The used optimization model could be enhaced to 
consider both, voltage angles and voltage magnitues and re-formulated as second-order 
cone programming problem. For simplicity reasons, we did not constraint the power that is 
assigned to individual cars. Considering it could lead to more realistic behavior, however, 
the resulting model would pose significant computational challenge.
User model related challenges: The future electrical distribution networks could evolve 
to support heterogeneous types of loads (network users) using market mechanism. The
basic idea is inspired by the resource pricing in communication networks [5]. The network 
should allow interaction between heterogeneous populations of users by providing 
mechanisms that could be used to provide active network users with necessary 
information and the correct incentives to use the network in a fair and efficient way.
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